RAGLLM

  • Client

    Data engineering research

  • Technologies

    Python 3.13+, Retrieval-Augmented Generation (RAG), Large Language Models (LLMs)

  • Links
RAGLLM project screenshot

Overview

A CLI tool enabling natural language querying of document collections using Retrieval-Augmented Generation (RAG).

Technologies

  • Python 3.13+
  • Retrieval-Augmented Generation (RAG)
  • Large Language Models (LLMs)
  • Vector Embeddings
  • llama-index Framework
  • DeepSeek API
  • Ollama Integration
  • Natural Language Processing
  • Command Line Interface

Key Features

  • Natural language document querying
  • Multi-model LLM backend support
  • Semantic search with embeddings
  • Environment-based configuration
  • Interactive CLI interface
  • Local document loading
  • Vector indexing
  • Modular architecture
  • Lightweight dependencies
  • Cross-platform support

Challenges & Solutions

Model Integration and Abstraction

Unified multiple LLM backends under a single interface.

Efficient Document Processing

Implemented scalable vector indexing for semantic retrieval.

CLI Design and User Experience

Designed a simple yet flexible CLI workflow.

My Role

Designer and developer responsible for RAG architecture, model integration, indexing, and CLI implementation.

Results

Delivered a versatile RAG tool for developers and researchers.